التخطي إلى المحتوى

Exercice 11 Série 3 La gravitation universelle TCSF Cours de physique:

(انقر هنا لاغلاق الاعلان) Close ×

plus articles:

cours gravitation evec exercices  tronc commun en videos

cours et exercices tronc commun en pdf

L’exercice 11 de la série 3 du cours de physique TCSF aborde le sujet de la gravitation universelle. Ce concept essentiel de la physique est étudié en profondeur dans ce cours, permettant aux étudiants de comprendre les lois qui régissent l’attraction entre les corps célestes.

La gravitation universelle fait référence à la force attractive qui existe entre tous les objets dotés de masse. Cette force a été formulée pour la première fois par Sir Isaac Newton au 17ème siècle, et elle est un élément fondamental de la physique moderne.

Dans cet exercice, les étudiants sont amenés à appliquer les lois de la gravitation universelle pour résoudre des problèmes pratiques. Ils doivent notamment calculer la force de gravité entre deux objets en utilisant la formule de Newton pour la gravitation. Cela leur permet de mettre en pratique leurs connaissances théoriques et de développer leurs compétences en résolution de problèmes.

L’exercice 11 de la série 3 met également l’accent sur l’importance de la constante gravitationnelle, qui est une valeur fondamentale dans la formulation mathématique de la gravitation universelle. Les étudiants apprennent à utiliser cette constante dans leurs calculs et à comprendre son rôle dans la mesure de la force gravitationnelle.

En abordant la gravitation universelle, ce cours de physique TCSF offre aux étudiants une compréhension approfondie des forces fondamentales qui régissent l’univers. En comprenant la nature de la gravitation et en apprenant à résoudre des problèmes liés à cette force, les étudiants acquièrent des compétences qui leur seront utiles dans de nombreuses autres branches de la physique.

En conclusion, l’exercice 11 de la série 3 du cours de physique TCSF consacré à la gravitation universelle est un élément clé de la formation des étudiants en sciences. Il leur permet de comprendre les lois qui régissent l’attraction entre les corps célestes et de développer leurs compétences en résolution de problèmes. Cette compréhension approfondie de la gravitation universelle est essentielle pour toute personne souhaitant poursuivre des études ou une carrière dans les domaines de la physique, de l’astronomie ou de l’ingénierie spatiale.

التعليقات

  1. Matière : Mathématiques
    ————————–Keywords ——————–
    Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com

  2. Matière : Mathématiques
    ————————–Keywords ——————–
    Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com

  3. Matière : Mathématiques
    ————————–Keywords ——————–
    Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *