Exercice 9 Série 2 La gravitation universelle TCSF Cours de physique:
plus articles:
cours gravitation evec exercices tronc commun en videos
cours et exercices tronc commun en pdf
Si vous êtes étudiant en physique, vous avez sûrement entendu parler de l’exercice 9 de la série 2 sur la gravitation universelle du cours de TCSF. Dans cet article, nous allons examiner cet exercice en détail et fournir des informations utiles pour le résoudre avec succès.
L’exercice 9 de la série 2 porte spécifiquement sur la force gravitationnelle et la relation entre la masse, la distance et la force gravitationnelle. La gravitation universelle est une force fondamentale de la nature qui agit entre tous les objets dotés de masse. Elle est responsable de maintenir les planètes en orbite autour du soleil, la lune en orbite autour de la Terre et de nombreuses autres phénomènes cosmiques.
Pour résoudre cet exercice, il est important de comprendre la loi de la gravitation universelle formulée par Isaac Newton. Selon cette loi, la force gravitationnelle entre deux objets est directement proportionnelle au produit de leurs masses et inversement proportionnelle au carré de la distance qui les sépare. La formule mathématique qui exprime cette relation est F = G * (m1 * m2) / r^2, où F représente la force gravitationnelle, G est la constante gravitationnelle, m1 et m2 sont les masses des objets et r est la distance qui les sépare.
En résolvant cet exercice, vous serez amené à utiliser cette formule pour calculer la force gravitationnelle entre deux objets donnés. Il est également possible que vous soyez confronté à des questions impliquant la manipulation algébrique de cette formule pour résoudre des problèmes de différentes natures.
Il est conseillé de revoir et de comprendre les concepts de base de la gravitation universelle avant de vous lancer dans la résolution de cet exercice. Assurez-vous de connaître la signification de chaque paramètre de la formule et comment ils interagissent les uns avec les autres.
En conclusion, l’exercice 9 de la série 2 sur la gravitation universelle du cours de TCSF peut être une occasion de mettre en pratique vos connaissances en physique et de consolider votre compréhension des lois fondamentales qui régissent l’univers. En comprenant la loi de la gravitation universelle et en maîtrisant sa manipulation mathématique, vous serez en mesure de résoudre avec succès cet exercice et d’approfondir votre compréhension de ce concept crucial en physique. Bonne chance dans vos études !
OK
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com