Exercice 12 Série 2 La gravitation universelle TCSF Cours de physique:
plus articles:
cours gravitation evec exercices tronc commun en videos
cours et exercices tronc commun en pdf
L’exercice 12 de la série 2 du cours de physique TCSF aborde le sujet de la gravitation universelle. Ce concept fondamental en physique, formulé par Isaac Newton, régit les mouvements des corps célestes dans l’univers. Dans cet exercice, les étudiants sont amenés à étudier les principes de base de la gravitation et à appliquer les lois de Newton pour résoudre divers problèmes liés à ce phénomène.
La gravitation universelle est un sujet passionnant et essentiel à la compréhension de nombreux phénomènes observés dans l’univers. Elle régit la trajectoire des planètes autour du soleil, des lunes autour des planètes, et même des étoiles au sein des galaxies. Comprendre les lois de la gravitation est donc crucial pour appréhender la dynamique du cosmos.
L’exercice 12 de la série 2 du cours de physique TCSF permet aux étudiants d’approfondir leur compréhension de la gravitation universelle en mettant en pratique les formules et les concepts abordés en classe. Les problèmes proposés dans cet exercice peuvent porter sur des sujets variés tels que le calcul de la force gravitationnelle entre deux corps, la détermination de la période de révolution d’une planète autour d’une étoile, ou encore la prédiction de la trajectoire d’un objet soumis à la gravité.
Pour réussir cet exercice, les étudiants devront mobiliser leurs connaissances sur la gravitation universelle, maîtriser les formules associées, et être capables de résoudre des problèmes concrets en utilisant ces outils. Cela leur permettra de renforcer leur compréhension du sujet et d’acquérir de solides compétences en résolution de problèmes physiques.
En conclusion, l’exercice 12 de la série 2 du cours de physique TCSF sur la gravitation universelle est un moyen efficace pour les étudiants d’approfondir leur compréhension de ce concept fondamental. En mettant en pratique les lois de Newton et les formules associées, les étudiants pourront consolider leurs connaissances et développer leurs compétences en résolution de problèmes physiques. Ce faisant, ils seront mieux préparés à affronter les défis que pose l’étude de la physique dans le domaine de la gravitation universelle.
OK
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
Matière : Mathématiques
————————–Keywords ——————–Limite d'une fonction numérique Limite des fonctions exponentielles Limites des fonctions logarithmiques Limite d'une fonction trigonométrique Fonctions exponentielles Fonctions logarithmiques Fonctions trigonométriques Fonctions polynômes Fonctions rationnelles Cours et exercices corrigés Cours de Maths Cours de Physique Liste des mots-clés en mathématiques : – Algébriquement : En utilisant des méthodes mathématiques qui font intervenir des variables ou des symboles pour représenter des valeurs – Analyser : Faire l’examen mathématique de parties pour déterminer la nature, la proportion, la fonction, les relations et les caractéristiques du tout – Classer : Faire entrer des éléments ou des concepts dans des catégories selon des caractéristiques et des attributs communs – Comparer : Examiner le caractère ou les attributs de deux choses en fournissant les caractéristiques qui leur sont communes et qui font ressortir leurs similarités et leurs différences – Conclure : Formuler un énoncé qui découle d’un raisonnement logique et/ou de preuves – Décrire : Présenter un concept par écrit – Déterminer : Trouver la solution, jusqu’à un point précis d’exactitude, à un problème en utilisant les formules, les méthodes ou les calculs appropriés – Esquisser : Faire un dessin qui représente les caractéristiques ou les attributs essentiels d’un objet ou d’un graphique – Évaluer : Trouver une valeur numérique ou l’équivalent dans une équation, une formule ou une fonction – Expliquer : Clarifier ce qui n’est pas évident de prime abord ou qui n’est pas entièrement connu; donner l’origine ou la raison; donner le détail – Illustrer : Clarifier en donnant un exemple. La forme que doit prendre l’exemple sera précisée dans la question; p. ex. une description écrite, un schéma ou un diagramme – Interpréter : Donner la signification de quelque chose; présenter de l’information d’une nouvelle façon qui donne plus de sens aux données initiales – Justifier : Indiquer pourquoi une conclusion a été énoncée en donnant des raisons et/ou des preuves qui représentent un argument mathématique – Modéliser : Représenter un concept ou une situation de façon concrète ou symbolique – Prouver : Établir la véracité ou la validité d’un énoncé en apportant des preuves factuelles ou en avançant un argument logique – Résoudre : Donner la solution d’un problème – Vérifier : Établir, par substitution dans un cas particulier ou par comparaison géométrique, la véracité d’un énoncé Index : Abscisse Représentation et traitement de données Le repérage Repérage sur une droite graduée Représentation et traitement de données Le repérage Repérage dans le plan Accroissements Représentation et traitement de données Les fonctions Fonction affine Adjacent Géométrie plane Les angles Les angles complémentaires, supplémentaires et adjacents Affine Représentation et traitement de données Les fonctions Fonction affine Agrandissement Représentation et traitement de données La proportionnalité Agrandissement et réduction Ajouter des fractions Nombres Les nombres en écriture fractionnaire Somme et différence de deux nombres en écriture fractionnaire Le cercle circonscrit Cône de révolution Géométrie dans l'espace Le cône de révolution Coordonnées Représentation et traitement de données Le repérage Repérage dans le plan Coordonnées géographiques Représentation et traitement de données Le repérage Repérage sur une sphère Correspondant Géométrie plane —————————————————————————– Pour plus d'informations : E-mail : info.space2study@gmail.com
merci bien
merci